The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age.
نویسندگان
چکیده
Mammalian target of rapamycin complex 1 (mTORC1) signaling is crucial for the regulation of protein synthesis. Most of known mTORC1 regulators have been isolated and characterized using cell culture systems, and the physiological roles of these regulators have not been fully tested in vivo. Previously we demonstrated that the insulin (INS) and amino acid (AA)-induced activation of mTORC1 is developmentally regulated in skeletal muscle (Suryawan A et al. Am J Physiol Endocrinol Metab 293: E1597-E1605, 2007). The present study aimed to characterize in more detail the effects of the postprandial rise in INS and AA on the activation and abundance of mTORC1 regulators in muscle and how this is modified by development. Overnight fasted 6- and 26-day-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic conditions (control), 2) euinsulinemic-euglycemic-hyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, enhanced the PRAS40 phosphorylation, and this effect was greater in 6- than in 26-day old pigs. Phospholipase D1 (PLD1) abundance and phosphorylation, and the association of PLD1 with Ras homolog enriched in brain (Rheb), were greater in the younger pigs. Neither INS, AA, nor age altered the abundance of Rheb, vacuolar protein sorting 34 (Vps34), or FK506-binding protein 38 (FKBP38). Although INS and AA had no effect, the abundance of ras-related GTP binding B (RagB) and the association of RagB with Raptor were greater in 6- than in 26-day-old pigs. Neither INS, AA, nor age altered AMPK-induced phosphorylation of Raptor. Our results suggest that the enhanced activation of mTORC1 in muscle of neonatal pigs is in part due to regulation by PRAS40, PLD1, and the Rag GTPases.
منابع مشابه
Regulation of protein synthesis by amino acids in muscle of neonates.
The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent...
متن کاملAmino acids and insulin are regulators of muscle protein synthesis in neonatal pigs.
The stage of development between birth and weaning in mammals is a period of very rapid growth that is crucial for the long-term well-being of the animal. The rate of protein deposition in neonatal animals is very high because dietary protein is efficiently utilized to increase body protein mass. Our studies in neonatal pigs have shown that this high efficiency of protein deposition is largely ...
متن کاملActivation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated.
Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to translation initiation and how these responses change with development. Overnight-fasted 6- (n = 4/...
متن کاملE-00210-2002-R1 0 FINAL ACCEPTED VERSION Protein Tyrosine Phosphatase 1B Activation Is Developmentally Regulated in Muscle of Neonatal Pigs
The high activity of the insulin signaling pathway contributes to the enhanced feedinginduced stimulation of translation initiation in skeletal muscle of neonatal pigs. Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of the tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1). The activity of PTP1B is determined mainly by its association...
متن کاملLeucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2010